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ABSTRACT

With a significant amount of spatial data archives online, data
conflation is becoming more and more critical in the domain of
Geographical Information Science (GIScience) because of its broad
applications such as detecting the development of road networks
and the change of river course. Existing conflation approaches usu-
ally rely on the vector data of corresponding features in multiple
sources to have an approximate location. However, they commonly
overlook the uncertainty produced during the vector data genera-
tion process in the data sources. In previous work, we presented
a Convolutional Neural Networks (CNN) recognition system that
automatically recognizes areas of geographic features from maps
and then generates a centerline representation of the area feature
(e.g., from pixels of road areas to a road network). In this paper,
we propose a method to systematically quantify the uncertainty
generated by an image recognition model and the centerline ex-
traction process. We provide an end-to-end evaluation method that
exploits the distance map to calculate the uncertainty value for
centerline extraction. Compared with methods that do not consider
uncertainty value, our algorithm avoids using a fixed buffer size to
identify corresponding features from multiple sources and generate
accurate conflation results.
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1 INTRODUCTION

Because of the high capability of computing systems and storage
as well as the Internet, there is a rapid growth of geospatial data
online. A great amount of organizations have scanned historical
maps and archived them in digital format. For example, the United
States Geological Survey (USGS) database,! as one of the most sig-
nificant online sources for topographic maps, contains thousands of
scanned map documents ranging from 1884 to 2006, covering entire

Thttps://www.usgs.gov/products/maps/overview
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United States states. Other map sources like OpenStreetMap?offer
not only free-downloaded maps but also other kinds of geospa-
tial data like locations of highways and restaurant names. Besides
map sources from organizations, remote sensors, usually carried by
satellites, also provide numerous images about physical surfaces on
the Earth with real-time and long-time series information on large
geographic features. For instance, as the earliest satellites image
dataset covering the entire territory of the United Kingdom, Land
Cover Map 2000 (LCM2000) 3 collects different kinds of landforms
and plants variation across seasons. All those spatial images are
essential information sources for various disciplines such as biology,
history and social sciences[5].

Due to the availability of a large quantity of spatial data, many
studies [14, 16, 18, 20] are focusing on extracting geographic fea-
tures from multiple sources and integrating them for future analysis.
The process of integrating information from multiple sources is
called “conflation.” Conflation on spatial data is important for sev-
eral reasons. First, because different datasets provide different types
of features, we can add up all features of the same location to obtain
a comprehensive evaluation about this region (eg., the satellites
images provide real-time information of the earth surface while
maps offer location names). Second, the differences of the same
geographic or human-made features across long time dimensions
imply a specific pattern about the development of biography and
human activities inside this area. For instance, a user can compare
vector data of railroads in the same area but from different time
periods for change analysis to identify the development of railroads
over time.

One limitation in current approaches of integrating vector data
for analysis is that most approaches do not incorporate the un-
certainty arises during the vector data generation process. How-
ever, the uncertainty value is necessary in the conflation stage. For
geospatial data, uncertainty is generated in many places including
data collection and image processing. This paper focuses on quan-
tifying the two major sources of uncertainty in vector-to-vector
geospatial data conflation. Specifically, one of the vector data in the
conflation process is the centerline representation of geographic
features(e.g., road networks) extracted from images.

The first source of uncertainty comes from the feature recog-
nition model. A common procedure in vector-to-vector data con-
flation is to first extract geographic features from raster images
and then compare the features with vector data from another data
source. Because it is impossible to manually extract features from
raster images considering existing millions of maps and satellites
images, we need an automatic geographic feature recognition sys-
tem to separate features from background pixels. In [8], we built an

Zhttps://www.openstreetmap.org/
Shttps://www.ceh.ac.uk/services/land-cover-map-2000
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automatic recognition system that utilizes Convolutional Neural
Networks (CNN) to handle the challenges of extracting geographic
features from historical maps. In the feature recognition step, each
predicted pixel has an associated uncertainty value. Typically the
recognition system discards pixels with uncertainty higher than
50% probability before extracting the centerline representation of
the feature. In this paper, we pass through the uncertainty gener-
ated by the recognition system to the centerline extraction process
for an uncertainty-aware conflation process.

The second type of uncertainty comes from the centerline ex-
traction process. After we acquire linear features from raster data,
a common practice is to extract the centerline representation and
use this unit resolution vector data to represent the extracted linear
features (See in Figure 1). There exist a great number of =skeleton
algorithms which extract the structure information of the curves
or strokes [1, 2, 9]. However, these algorithms do not preserve the
original shape of the features, and some pixels of centerlines repre-
sentation have deviated from the center. For example, in Figure 2,
we can see after applied the thinning algorithm, the variance of the
line width in the original image is lost, and the algorithm produces
jagged line pieces for irregular line conjunctions.

Figure 1: Using vector data to represent railroad features on
the map

In this paper, we present an approach that systematically quan-
tifies the uncertainty of geographic features produced during the
recognition and centerline extraction process, and then we use the
uncertainty to improve the conflation result. We first record the
uncertainty of pixels in recognition model and then evaluate the
thinning algorithm and generate the buffer size of centerline by the
distance map. We compare the mismatched pixels between buffered
output and recognition result to further quantify the uncertainty
value. Finally, we present how to use the pixels uncertainties in the
conflation process.

In the remainder of this paper, Section 2 discusses the related
work, Section 3 presents the overall procedure for measuring the
uncertainty, Section 4 presents the experiment result, and Section
5 discusses the future work.

3___‘:1._

Figure 2: Left: Original image file with irregular junctions.
Right: The centerline representation of left pictures after ap-
plied thinning algorithm

2 RELATED WORK

Thinning Algorithms. In order to get the vector data of image
objects, one significant step is to generate the centerline representa-
tion of linear features. A large number of theoretical and practical
methods have been investigated. Generally, the thinning algorithms
are categorized based on their thinning methods. Classical approach
to extract centerlines usually relies on digital morphological erosion
[3, 12, 15]. In 1980, Theo has already proposed a skeleton algorithm
that iteratively erodes the boundary of the pixels while preserving
the connectivity of the original objects at the same time [15]. In
his paper, Theo explores in depth the geometry principle of the
image objects and defines the edge-strength by using a linear diffu-
sion equation that helps to deal with grayscale noise in the images
[15]. Another popular method is based on the Voronoi diagram of
boundary that helps to generate the medial axis. The medial axis is
the point sets where each point has more than one closest points
on the boundary (2D) or more than two points on the surface (3D)
[7, 10]. This feature makes it possible to efficiently regenerate the
original objects. For example, Giesen et al. propose an improved
medical axis transform that not only enforces topology of the object
but also removes insignificant brunches in traditional medical axis
method [10].

However, there is hardly a standard criterion to measure the
performance of these thinning algorithms because they are serving
for different purposes. Some thinning algorithms aim to avoid cor-
ner distortions under different image artifacts while the others are
trying to reduce the errors in the reconstruction of original image
objects. The shapes of the thinned centerlines in the output also
vary a lot in different methods, and the variances can significantly
affect the vector data and thus influence conflation result.

Data Conflation Conflation in geospatial datasets has always
been a spotlight in the research community and commercial soft-
ware development of GIS because of its wide range of applications.
For example, The JUMP project has developed many powerful com-
mercial software tools for GIS data analysis and conflation [17].
However, the differences in image resolution make it challenging
to integrate features from two independent datasets accurately
[18]. As a result, a great amount of effort has been put into auto-
matic feature alignment, and traditionally they fall into two cate-
gories: vector-to-vector alignment and vector-to-raster alignment.
For vector-to-vector alignment, researchers commonly use point-
based methods and line-based methods to link the entities. In [19]
Volz integrated street road data by topological splitting the street ob-
jects to add additional nodes for a precise matching and iteratively
calculating the similarity between nodes and edges. The algorithm
considers the emanating edges, distance, direction as the criterion



to calculate the similarity. For vector-to-raster integration, vector
data plays an important role in locating the features on the images.
Chen et al. propose an integration method that map vector data
onto street maps. They first identify the road intersection points on
roads recognized on images that have been pre-processed by the
thinning algorithm and then link them with the intersection points
on the vector data by geographic rules [4].

As can be seen in all these work, no matter what approach the
researchers use for information integration, the location of vec-
tor data points is an important criterion to measure the similarity
between the vector data do not always correctly align with corre-
sponded entities in the other dataset. To deal with this problem,
their work either use a fixed distance to search neighborhood points
[19] or use a fixed size to buffer vector data [4] in order to link the
corresponding features.

In contrast, our algorithm provides a solution to measure the
uncertainty generated by the recognition model and thinning algo-
rithms. With the uncertainty, the algorithm is able to use a more
precise matching metric compared with previous methods. Besides,
our algorithm avoids using a fixed buffer size for the vector data that
may cause incorrect conflation result especially when the width of
the feature varies a lot on the images.

Geographic Raster Data (e.g., historical
map scans, satellite imagery)
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3 OVERALL APPROACH

In this paper, as a case study to illustrate our approach, we perform
an analysis to determine changes of railroads in a USGS historical
map and contemporary vector data of the same region. We first
describe the procedure of generating uncertainty given the image
recognition result and the centerline extraction algorithm. After
we run the thinning algorithm to obtain the centerline of the geo-
graphic feature, we record the recognition uncertainty and use the
“distance map” to evaluate the uncertainty generated in the thinning
process. In our case study, we use the Guo-Hall two-subiteration
thinning algorithm as an example because of its wide usage and
high computing efficiency [11]. We then show the steps of recording
the uncertainty value of each pixel in the extracted centerline. The
uncertainty values represent how accurate the centerline is if we
want to reconstruct the exact pixel area of the geographic feature
on the map. We finally present the procedure of using the uncer-
tainty values to improve the conflation result. Figure 3 shows the
workflow of the uncertainty quantification process in our approach
and the conflation process that utilizes uncertainty value.

In the following sections, we denote the raster output from the
recognition model as recognition uncertainty map, the center-
line of recognition result with uncertainty value as centerline
representation, , the intermediate buffered output using distance
map value as reconstruction map,the final raster buffered output
adjusted by distance map and centerline uncertainty as probability
map.

3.1 Uncertainty in Recognition System

In [8], we developed a geographic feature recognition system using
the Fully Convolutional Network (FCN). FCN was proposed by
Long et al. in 2015 and was trained in pixel-to-pixel, which showed
great success in spatial dense prediction tasks [13]. Inspired by the
recent work of [13], our recognition system trains the FCN net-
work and takes advantages of the skip architecture that combines
information from the intermediate layer with the information from
final layer to refine the spatial resolution in the result. Finally, the
system produces a grayscale raster image with each pixel taking
a value between 0 and 1, which represents the uncertainty of this
pixel to be classified as the feature of interest (e.g., 0 means the
network is very confident that this pixel is a part of the feature of in-
terest because it has zero uncertainty). Figure 4 shows a part of the
recognition uncertainty map of our recognition model. In previous
work, the recognition system removes the pixels with uncertainty
value higher than 0.5 in the final prediction output because these
pixels have a great chance to be the false positives and classify
all remaining pixels to be the true positives. In the experiment of
extracting geographic features on a variety of historical maps, the
system achieves correctness of 84.74% and completeness of 97.46%
[8]. However, discarding uncertainty value potentially loses useful
information and therefore in this paper, we record the recognition
uncertainty value o; for pixel p; € C where o; € [0, 1] and Cis the
extracted centerline representation to improve the performance of
matching railroads across multiple data sources. We assume the
median of the uncertainty values in the centerline pixel’s neighbors
can better represent the uncertainty of this pixel than the value



of itself because there is much “noisy objects” intersecting the fea-
tures, the median value is effective in filtering uncertainty value
generated by the noise background. Assuming p; is the current
pixel to be processed, pa, p3...po are its neighborhood pixels in the
recognition result (Figure 5), and the corresponded uncertainty
value is o7.

o1 =X, X = {I(p1), 1(p2), --.I(po)} 1)

where X is the median of X which contains the foreground neigh-
borhood pixels and I (p;) is the uncertainty value of pixel p; in the
recognition result.

3.2 Uncertainty in Centerline Representation

After we obtain the recognition uncertainty map (i.e., pixel areas
of the geographic feature on interest), it is common to extract the
centerline representations to represent original linear features in
the raster images and save the centerline as vector data to save data
storage. However, because this step of data compression causes
information loss on the width (area) of the extracted feature pix-
els, we exploit the distance map to obtain the distance between
pixels in the centerlines and pixels in the nearest boundary of the
extracted feature pixels. This distance information help to describe
the shape of the recognition result (Section 3.2.1). Next, we use the
distance information to reconstruct the the recognition result and
record the reconstruction errors as the uncertainty of the centerline
representation (Section 3.2.2).

3.2.1 Distance Map. The distance map is useful in many image
processing applications such as skeleton calculation and expansion
of image objects. In [6], Danielsson proposed and analyzed an eight-
point sequential Euclidean distance mapping (8SED) algorithm[6].
According to the algorithm, we view each pixel in the image as
a vector of two positive integer components consisting of the x-
direction and y-direction. Initially, the distance of each pixel is set
to be
Lxy) = (z,2) if (xy)e S
L(xy)=(0,0) if (xy) €S

where L is the distance mapping procedure, z represents an infinite
integer, S represents the geographic features and S represents the
background. Figure 6 shows an example of the integer component
output by using the 8SED-algorithm. The pixels outside the bound-
ary are first initialized to infinite, and pixels inside the boundary
are initialized to zero. Suppose we are at the boundary background
pixel with integer components (0,0), and we want to propagate dis-
tance information to the feature pixel in the west. We add 1 to the
x-axis integer components and update the integer component of the
feature pixel from (z,z) to (1,0). Likewise, if we want to propagate
distance information to the feature pixel in the south, we add 1 to
the y-axis integer component and update the integer component
to (0,1). We propagate distance information to eight directions and
retain the integer component pairs with the minimum real distance
where the distance between a pixel to the nearest area boundary is
computed as

| L(x. ) |= L. )? + Lyx,y)? &)

To make use of these properties, we process the grayscale recog-
nition result into binary images with values 0 and 1 (0 represents

the background pixel, and 1 represents the feature pixel) and then
apply the 8SED-algorithm because the distance to the boundary
pixel is independent of the model uncertainty value. For each pixel
pi € C, we record the distance value y;, which can be used for
reconstructing the original feature area in the later stage (Figure 7).

3.2.2  Quantifying Uncertainty in Reconstructing Pixels Areas from
Centerline. One significant factor that affects the final conflation
result is the thinning algorithm’s quality for reconstructing the
original object area in the image. With the help of distance map,
we can generate the object area from the centerlines using the
morphological dilation and represent the object area as the binary
reconstruction map. For each pixel p; € C with distance value y;,
let the structuring element K; be the squares with size (| 2y; —1]) =
(L2y; — 1]). We obtain the binary reconstruction map I, (the object
area) by morphological dilation

Ib =pi @K,’,Vpi eC (3)

Figure 9 shows a small region of binary reconstruction map
compared with original image objects (recognition uncertainty
map). However, as seen in the Figure 9, binary reconstruction map
still has mismatches because the extracted skeletons are not always
at the center of the linear feature. A small loss in the detail of
the branches can incur significant distortion and lead to incorrect
matching output later in conflation. To address this problem, we
measure the number and location of mismatched pixels based on
the comparison between the original images and the reconstruction
map by four error values d;1, d;2, di3, dis. We have four direction
values because once the algorithm has found the mismatched pixels,
it searches the centerline pixels in four directions: north, south,
east and west. We use d;1 to represent north, d;s to represent south
direction and etc. For notational convenience, we denote the set of
pixels in the buffered image as I}, and the set of pixels in recognition
result as I;. We initialize the four direction values of every pixel in
the centerline representation to zero. For each unmatched pixel g;
between buffered output and original image object, the algorithm
searches centerline pixels along four directions and chooses the
direction with shortest shift distance. The algorithm then updates
the corresponded error value of the centerline pixel by the following
equation

dij+1 ifp;el NI,
%:{U+ A @)

dij—l if p; EZﬂIb

where j =€ {1,2,3,4} is the associated direction index and I, is
the background pixels in buffered output and I is the background
pixels in the recognition result. Figure 10 is an example showing
how the error value is recorded.

3.3 Data Integration using Uncertainty
Estimates

This step describes that once the uncertainty values for centerlines
are recorded, the procedure of using the uncertainty value to iden-
tify common line segments between the recognized centerlines
and another vector dataset of the same feature but from a differ-
ent source. Assuming one input is contemporary vector data of
geographic features. The other input is the extracted centerline
representation of the geographic features C from a map edition at
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Figure 8: The reconstruction process of buffering a centerline by the distance values. The black squares are the foreground
pixels, and the gray squares represent background pixels. The value on the centerline is the distance value. The pixel inside
the red rectangle is the next pixel to be buffered.

a different time. Each pixel in the centerline representation? is as- o; denotes recognition model uncertainty, y; denotes the distance

sociated with an uncertainty tuple <o, yi, di1, di2, di3, dia> where value and d;; to d;j4 denotes the four-direction values. The output

4Here we assume the extracted centerlines are still in raster format for illustrating the
idea. In practice, the extracted centerline is typically converted to vector format.
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Figure 9: An example of comparing the extracted feature im-
age with the buffered output using the distance map. The
black pixels represent the centerlines using Guo-Hall algo-
rithm. The gray pixels exist both in the extracted feature
images and in buffered images. The red pixels exist in the ex-
tracted feature images but not in buffered images. The blue
pixels exist in the buffered image but not in the extracted
feature images.
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Figure 10: An example of the uncertainty values for three
pixels.

is a “matchability” score m(ls) € [0, 1] where I represents a line
segment in vector data and the higher the score is, the less likely
Is has a correspondent entity in C. The procedure consists of two
parts. First, we generate the probability image denoted as I, by the
uncertainty triple where each pixel value z; represents the proba-
bility of current pixel in as the targe features. We then rasterize the
contemporary vector data and overlay the rasterized results with I,
to identify the same entity by using the probability of overlapping
area of each line segment.’

To generate the probability of each pixel, we first buffer the cen-
terline representation C into the reconstruction map I, using the
distance value and the recognition uncertainty value. We buffer the

SIn practice, this conflation process is usually performed using vector data of the two
datasets. The rasterization process here is to illustrate the idea.

centerline pixels by dilation as described in Section 3.3. We denote
the set of pixels in the buffered result as A. However, since this
dilation process is designed for the binary image with value 0 and
1, we also need to find a way to propagate the uncertainty value.
If p; € AN C, the probability of p; in the feature of interest is its
associated model uncertainty value y;. If p; € AN C, the proba-
bility is the maximum centerline pixels’ recognition uncertainty
that propagated through the morphological dilation. Therefore, we
obtain the equation to calculate the probability of pixel I,(p;) as
follows

()

{Yi ifpi € ANT,
Ip(pi) = . =
max{o1,02...0n} ifpi e ANC
where o1, 03...0p is the uncertainty of the set of centerline pixels
qi that satisfies p; € q; ® K;

Once the reconstruction map with uncertainty value is obtained,
the algorithm adjusts the probability value of each pixel by the
error values dj; to di4. Assuming p; is the current pixel, d;; is the
associated error value where j € 1,2, 3,4 and Ip (pi is the probability
value after buffering the centerlines. We move the point towards the
corresponded direction to the boundary of reconstruction object
area. If d;; >0 which means there are | d;; | pixels missing from the
reconstruction object area, the algorithm replaces the | d;; | pixels’
probability along the direction from 0 to ¢;. Conversely, if d;; < 0
the algorithm substitute the pixel’s probability with 0.

Finally, we convert contemporary vector data into a rasterized
image with two values 0 and 1 (0 if it is a background pixel). For each
line segment with starting point (x1, y1) and end point (x2, y2), we
crop the rectangle with four corner points four points (min{xy, x2},
min{y1, y2}), (max{x1, x2}, min{y1, y2}), (min{x1, x2}, max{y1, y2}),
(max{x1,x2}, max{y1,y2}) on both the probability image and ras-
terized image to include the geographic feature in the sub-regions.
We denote that the cropped sub-images of probability image and
raster image as Py, and Ry, respectively. We calculate the proba-
bility score of the line segment s vector data m(ls) by the following
equations.

La: €l
m(ly) = 2@ €l "L(?I)e ) (©)

where I,(q;) represents the probability value of each pixel g; in the
line segment I and L(Is) represents the length of line segment ;.
If m(l) is greater than a tunable parameter Ts;,,, we consider that
this line segment does not have a corresponded entity on the map
layer.

4 PRELIMINARY EXPERIMENT RESULT

We evaluated our approach using railroad data from two geographic
datasets: a USGS historical topography map, Bray in California
(circa 2001) and US Census railroad vector data (circa 2016). Our
goal is to show that the uncertainty evaluation algorithm described
in Section 3 can improve the effectiveness of the geographic feature
conflation process and identify corresponding features from the
two datasets.

In the experiment, we first ran the FCN model to extract railroads
from the map and used 1) our proposed method and 2) a baseline
method to integrate the extracted railroads with the US Census
railroad vector data. We call it a match if either our approach or



the baseline method could correctly identify whether the railroad
from vector data has an equivalent entity on the map. We call it a
wrong match either 1) the railroad from vector data doesn’t exist
on the maps but still matches to an entity in the extracted railroads
or 2) one line segment of railroad maps to two entities on the map.
We manually checked whether the matched entity was correct.
We calculated the accuracy based on the length of the correctly
matched line segments divided by the overall line segments length
in the vector data. For each line segment s, we used Euclidean
distance ||/s||2 in the image coordinates as its vector length.

To test our overall approach, we ran our algorithm on the entire
image of the extraction output (i.e., the probability image of whether
or not a pixel belongs to railroads) using Ts;nm, =0.5. If the similarity
between two line segments from different sources is greater than
0.5, we considered that these two line segments did not map to the
same entity. For the baseline method, we simulated a traditional
conflation process. After we obtained the recognition result from
the recognition model, we filtered pixels with an uncertainty value
greater than 0.5 and the remaining pixels were classified as the rail-
road pixels because tradition classification algorithms ignore pixels
with uncertainty value higher than 0.5 to decrease false positive.
We then ran the thinning algorithm and buffered the centerline
with buffer size p=3-pixel, p=5-pixel and p=7-pixel. For fairness,
we also applied T;;, =0.5 to evaluate the vector data similarity.
Since the buffered outputs were binary images, the baseline method
considered the line segment had an equivalent entity on the map
if the similarity value was lower than 0.5 which means half of its
pixels were matched with the recognition result.

Overall we have 309 line segments with a total length 24,158
pixels. Figure 11 shows the experiment results. The x-axis of Fig-
ure 11 represents the buffer size, the y-axis of Figure 11 shows the
accuracy. The red line presents the accuracy of our uncertainty
aware approach, which does not require a manually set buffer size.
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Figure 11: The accuracy chart of the results from the base-
line method and our approach. The red line is the conflation
accuracy of our approach. The black line shows the confla-
tion accuracy of using different fixed buffer sizes in the base-
line method.

Figure 12: Left: A line segment of extracted railroads on the
recognition uncertainty map. Right: The filtered output of
the left image. Pixels with an uncertainty value greater than
0.5 were filtered out. Therefore, the baseline method that us-
ing a fixed buffer size with 2-pixel could not generate the
correct conflation result.

We can see the performance of our algorithm compared with the
method using a fixed buffer size. We obtained 44.21% improvement
when the buffer size p = 2-pixel, 14.41% improvement when the
buffer size p = 3-pixel and 0.62% improvement when the buffer size
p = 5-pixel. The accuracy increased as the buffer size increased for
the baseline method. When the buffer size was greater than 3-pixel
(the width of railroads on the maps), the upward trend of accuracy
decreased.

For the baseline method, when the buffer width is too small, there
are not enough pixels to be compared with the line segments from
the contemporary vector data. Figure 12 shows the example that
our algorithm correctly identified the corresponding line segment
on the map while the classic method using the buffer size of 2-pixel
could not. Since the recognition model incorrectly extracted railroad
pixels, pixels in noisy areas were predicted with high uncertainty
and filtered out in the first step in the baseline method. In contrast,
with the help of retaining the recognition uncertainty, our approach
successfully determined a match between the railroads on the map
and the contemporary data.

For the baseline method, when the buffer size increases, there is
a higher chance for the pixel from the two sources to be matched.
However, increasing the buffer width could introduce incorrect
matches because a high number of the background pixels would
be included in the buffered images. For example, when the buffer
width is too large, two separate line segments could overlap with
each other and thus one line segment could match with two entities
in the map ( Figure 13 ). In our experiment, because the railroads
are very sparse, increasing buffer size to 7-pixel (more than twice as
wide as the railroads) still does not decrease the conflation accuracy.
In practice, the geographic features could align close with each
other, and the user needs to manually set the buffer width for each
of the input datasets and even for each line segment. Hence the
baseline method does not scale well to process a large number of
datasets (e.g., integrating thousands of historical maps with various
scan resolutions and map scales).

For both our approach and the baseline method, if the FCN model
can not extract the correct features, we always obtained an incorrect
integration result. For example, in Figure 14 because the background
was noisy, there was a gap in the recognition result. Although



line segment 1

Award and NVIDIA Corporation with the donation of the Titan Xp
GPU used for this research.

REFERENCES

Figure 13: The black line represents the railroad from con-
temporary vector data. When the buffer width is too large,
this part of the railroads map to two entities in the map.

XK~ N

Figure 14: Left: Part of the map layer of Bray in Califor-
nia circa 2001 junctions. The FCN model cannot correct
extract the railroads in this area due to the noisy back-
ground. Right: The recognition output of the left image.
The is a huge gap in the middle of the predicted line seg-
ment.

our algorithm was able to combine uncertainty information from
pixels, the recognition model gave poorly extracted features at some
locations, so our algorithm could not correctly match the vector
data. In this case, because there was a huge gap in the middle of
the predicted railroads, the uncertainty for this line segment was
over 0.6. One potential solution is to use semantic knowledge of the
geographic features. If there is a small gap between two lines on
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based on a spline curve model to connect the lines.

5 DISCUSSION AND FUTURE WORK

We presented an approach to quantify the uncertainty during the
recognition and thinning processes as well as a vector-to-vector con-
flation process using the uncertainty values. Future work includes
solving the error mentioned in Section 4. One possible solution
is to use a spline model with neighborhood pixel uncertainty to
globally adjust the pixel uncertainty. We also plan to conduct ex-
tensive experiments to test the proposed method with more types
of geographic features and sources.
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